Left Termination of the query pattern f(b,f,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

f3(00, Y, 00).
f3(s1(X), Y, Z) :- f3(X, Y, U), f3(U, Y, Z).


With regard to the inferred argument filtering the predicates were used in the following modes:
f3: (b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


f_3_in_gaa3(0_0, Y, 0_0) -> f_3_out_gaa3(0_0, Y, 0_0)
f_3_in_gaa3(s_11(X), Y, Z) -> if_f_3_in_1_gaa4(X, Y, Z, f_3_in_gaa3(X, Y, U))
if_f_3_in_1_gaa4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> if_f_3_in_2_gaa5(X, Y, Z, U, f_3_in_gaa3(U, Y, Z))
if_f_3_in_2_gaa5(X, Y, Z, U, f_3_out_gaa3(U, Y, Z)) -> f_3_out_gaa3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
f_3_in_gaa3(x1, x2, x3)  =  f_3_in_gaa1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
f_3_out_gaa3(x1, x2, x3)  =  f_3_out_gaa1(x3)
if_f_3_in_1_gaa4(x1, x2, x3, x4)  =  if_f_3_in_1_gaa1(x4)
if_f_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_f_3_in_2_gaa1(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

f_3_in_gaa3(0_0, Y, 0_0) -> f_3_out_gaa3(0_0, Y, 0_0)
f_3_in_gaa3(s_11(X), Y, Z) -> if_f_3_in_1_gaa4(X, Y, Z, f_3_in_gaa3(X, Y, U))
if_f_3_in_1_gaa4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> if_f_3_in_2_gaa5(X, Y, Z, U, f_3_in_gaa3(U, Y, Z))
if_f_3_in_2_gaa5(X, Y, Z, U, f_3_out_gaa3(U, Y, Z)) -> f_3_out_gaa3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
f_3_in_gaa3(x1, x2, x3)  =  f_3_in_gaa1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
f_3_out_gaa3(x1, x2, x3)  =  f_3_out_gaa1(x3)
if_f_3_in_1_gaa4(x1, x2, x3, x4)  =  if_f_3_in_1_gaa1(x4)
if_f_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_f_3_in_2_gaa1(x5)


Pi DP problem:
The TRS P consists of the following rules:

F_3_IN_GAA3(s_11(X), Y, Z) -> IF_F_3_IN_1_GAA4(X, Y, Z, f_3_in_gaa3(X, Y, U))
F_3_IN_GAA3(s_11(X), Y, Z) -> F_3_IN_GAA3(X, Y, U)
IF_F_3_IN_1_GAA4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> IF_F_3_IN_2_GAA5(X, Y, Z, U, f_3_in_gaa3(U, Y, Z))
IF_F_3_IN_1_GAA4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> F_3_IN_GAA3(U, Y, Z)

The TRS R consists of the following rules:

f_3_in_gaa3(0_0, Y, 0_0) -> f_3_out_gaa3(0_0, Y, 0_0)
f_3_in_gaa3(s_11(X), Y, Z) -> if_f_3_in_1_gaa4(X, Y, Z, f_3_in_gaa3(X, Y, U))
if_f_3_in_1_gaa4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> if_f_3_in_2_gaa5(X, Y, Z, U, f_3_in_gaa3(U, Y, Z))
if_f_3_in_2_gaa5(X, Y, Z, U, f_3_out_gaa3(U, Y, Z)) -> f_3_out_gaa3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
f_3_in_gaa3(x1, x2, x3)  =  f_3_in_gaa1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
f_3_out_gaa3(x1, x2, x3)  =  f_3_out_gaa1(x3)
if_f_3_in_1_gaa4(x1, x2, x3, x4)  =  if_f_3_in_1_gaa1(x4)
if_f_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_f_3_in_2_gaa1(x5)
IF_F_3_IN_2_GAA5(x1, x2, x3, x4, x5)  =  IF_F_3_IN_2_GAA1(x5)
IF_F_3_IN_1_GAA4(x1, x2, x3, x4)  =  IF_F_3_IN_1_GAA1(x4)
F_3_IN_GAA3(x1, x2, x3)  =  F_3_IN_GAA1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

F_3_IN_GAA3(s_11(X), Y, Z) -> IF_F_3_IN_1_GAA4(X, Y, Z, f_3_in_gaa3(X, Y, U))
F_3_IN_GAA3(s_11(X), Y, Z) -> F_3_IN_GAA3(X, Y, U)
IF_F_3_IN_1_GAA4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> IF_F_3_IN_2_GAA5(X, Y, Z, U, f_3_in_gaa3(U, Y, Z))
IF_F_3_IN_1_GAA4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> F_3_IN_GAA3(U, Y, Z)

The TRS R consists of the following rules:

f_3_in_gaa3(0_0, Y, 0_0) -> f_3_out_gaa3(0_0, Y, 0_0)
f_3_in_gaa3(s_11(X), Y, Z) -> if_f_3_in_1_gaa4(X, Y, Z, f_3_in_gaa3(X, Y, U))
if_f_3_in_1_gaa4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> if_f_3_in_2_gaa5(X, Y, Z, U, f_3_in_gaa3(U, Y, Z))
if_f_3_in_2_gaa5(X, Y, Z, U, f_3_out_gaa3(U, Y, Z)) -> f_3_out_gaa3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
f_3_in_gaa3(x1, x2, x3)  =  f_3_in_gaa1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
f_3_out_gaa3(x1, x2, x3)  =  f_3_out_gaa1(x3)
if_f_3_in_1_gaa4(x1, x2, x3, x4)  =  if_f_3_in_1_gaa1(x4)
if_f_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_f_3_in_2_gaa1(x5)
IF_F_3_IN_2_GAA5(x1, x2, x3, x4, x5)  =  IF_F_3_IN_2_GAA1(x5)
IF_F_3_IN_1_GAA4(x1, x2, x3, x4)  =  IF_F_3_IN_1_GAA1(x4)
F_3_IN_GAA3(x1, x2, x3)  =  F_3_IN_GAA1(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 1 less node.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_F_3_IN_1_GAA4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> F_3_IN_GAA3(U, Y, Z)
F_3_IN_GAA3(s_11(X), Y, Z) -> F_3_IN_GAA3(X, Y, U)
F_3_IN_GAA3(s_11(X), Y, Z) -> IF_F_3_IN_1_GAA4(X, Y, Z, f_3_in_gaa3(X, Y, U))

The TRS R consists of the following rules:

f_3_in_gaa3(0_0, Y, 0_0) -> f_3_out_gaa3(0_0, Y, 0_0)
f_3_in_gaa3(s_11(X), Y, Z) -> if_f_3_in_1_gaa4(X, Y, Z, f_3_in_gaa3(X, Y, U))
if_f_3_in_1_gaa4(X, Y, Z, f_3_out_gaa3(X, Y, U)) -> if_f_3_in_2_gaa5(X, Y, Z, U, f_3_in_gaa3(U, Y, Z))
if_f_3_in_2_gaa5(X, Y, Z, U, f_3_out_gaa3(U, Y, Z)) -> f_3_out_gaa3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
f_3_in_gaa3(x1, x2, x3)  =  f_3_in_gaa1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
f_3_out_gaa3(x1, x2, x3)  =  f_3_out_gaa1(x3)
if_f_3_in_1_gaa4(x1, x2, x3, x4)  =  if_f_3_in_1_gaa1(x4)
if_f_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_f_3_in_2_gaa1(x5)
IF_F_3_IN_1_GAA4(x1, x2, x3, x4)  =  IF_F_3_IN_1_GAA1(x4)
F_3_IN_GAA3(x1, x2, x3)  =  F_3_IN_GAA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ PiDPToQDPProof
QDP
                  ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

IF_F_3_IN_1_GAA1(f_3_out_gaa1(U)) -> F_3_IN_GAA1(U)
F_3_IN_GAA1(s_11(X)) -> F_3_IN_GAA1(X)
F_3_IN_GAA1(s_11(X)) -> IF_F_3_IN_1_GAA1(f_3_in_gaa1(X))

The TRS R consists of the following rules:

f_3_in_gaa1(0_0) -> f_3_out_gaa1(0_0)
f_3_in_gaa1(s_11(X)) -> if_f_3_in_1_gaa1(f_3_in_gaa1(X))
if_f_3_in_1_gaa1(f_3_out_gaa1(U)) -> if_f_3_in_2_gaa1(f_3_in_gaa1(U))
if_f_3_in_2_gaa1(f_3_out_gaa1(Z)) -> f_3_out_gaa1(Z)

The set Q consists of the following terms:

f_3_in_gaa1(x0)
if_f_3_in_1_gaa1(x0)
if_f_3_in_2_gaa1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {F_3_IN_GAA1, IF_F_3_IN_1_GAA1}.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

IF_F_3_IN_1_GAA1(f_3_out_gaa1(U)) -> F_3_IN_GAA1(U)

Strictly oriented rules of the TRS R:

f_3_in_gaa1(0_0) -> f_3_out_gaa1(0_0)
if_f_3_in_1_gaa1(f_3_out_gaa1(U)) -> if_f_3_in_2_gaa1(f_3_in_gaa1(U))

Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 2   
POL(if_f_3_in_1_gaa1(x1)) = 2·x1   
POL(f_3_out_gaa1(x1)) = 1 + x1   
POL(F_3_IN_GAA1(x1)) = x1   
POL(s_11(x1)) = 2·x1   
POL(IF_F_3_IN_1_GAA1(x1)) = x1   
POL(f_3_in_gaa1(x1)) = 2·x1   
POL(if_f_3_in_2_gaa1(x1)) = x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ PiDPToQDPProof
                ↳ QDP
                  ↳ RuleRemovalProof
QDP
                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F_3_IN_GAA1(s_11(X)) -> F_3_IN_GAA1(X)
F_3_IN_GAA1(s_11(X)) -> IF_F_3_IN_1_GAA1(f_3_in_gaa1(X))

The TRS R consists of the following rules:

f_3_in_gaa1(s_11(X)) -> if_f_3_in_1_gaa1(f_3_in_gaa1(X))
if_f_3_in_2_gaa1(f_3_out_gaa1(Z)) -> f_3_out_gaa1(Z)

The set Q consists of the following terms:

f_3_in_gaa1(x0)
if_f_3_in_1_gaa1(x0)
if_f_3_in_2_gaa1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {F_3_IN_GAA1, IF_F_3_IN_1_GAA1}.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ PiDPToQDPProof
                ↳ QDP
                  ↳ RuleRemovalProof
                    ↳ QDP
                      ↳ UsableRulesProof
QDP
                          ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

F_3_IN_GAA1(s_11(X)) -> F_3_IN_GAA1(X)
F_3_IN_GAA1(s_11(X)) -> IF_F_3_IN_1_GAA1(f_3_in_gaa1(X))

The TRS R consists of the following rules:

f_3_in_gaa1(s_11(X)) -> if_f_3_in_1_gaa1(f_3_in_gaa1(X))

The set Q consists of the following terms:

f_3_in_gaa1(x0)
if_f_3_in_1_gaa1(x0)
if_f_3_in_2_gaa1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {F_3_IN_GAA1, IF_F_3_IN_1_GAA1}.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F_3_IN_GAA1(s_11(X)) -> F_3_IN_GAA1(X)
F_3_IN_GAA1(s_11(X)) -> IF_F_3_IN_1_GAA1(f_3_in_gaa1(X))

Strictly oriented rules of the TRS R:

f_3_in_gaa1(s_11(X)) -> if_f_3_in_1_gaa1(f_3_in_gaa1(X))

Used ordering: POLO with Polynomial interpretation:

POL(if_f_3_in_1_gaa1(x1)) = 1 + x1   
POL(F_3_IN_GAA1(x1)) = x1   
POL(s_11(x1)) = 2 + x1   
POL(IF_F_3_IN_1_GAA1(x1)) = x1   
POL(f_3_in_gaa1(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ PiDPToQDPProof
                ↳ QDP
                  ↳ RuleRemovalProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ RuleRemovalProof
QDP
                              ↳ PisEmptyProof

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

f_3_in_gaa1(x0)
if_f_3_in_1_gaa1(x0)
if_f_3_in_2_gaa1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are empty set.
The TRS P is empty. Hence, there is no (P,Q,R) chain.